

Fixed Target Results from STAR using Gold on Beam Pipe (AI) Events

The Coulomb Effect in Au+Al Collisions at $\sqrt{s_{NN}} = 3.0, 3.5, \text{ and } 4.5 \text{ GeV}$

Christopher Flores

For the STAR Collaboration University of California, Davis

Outline

- Motivation for Fixed Target Analysis
- Event Selection
- Pion/Proton Acceptance
- Particle Identification
- Particle Spectra
- Coulomb Fit
- Conclusions

Simulation of Au+Al fixed target event in the STAR detector using URQMD and STARSIM.

Motivation

RHIC Beam Energy Scan Goals

- Turn off QGP signatures
- Find Critical Point
- Study the existence and properties of a first order phase transition

Fixed Target Analysis

- Extends the BES to lower energies to expand search
- Allows for STAR results to be compared to previous experiments

Event Selection

Before Cuts

Event Cuts

- Vertex Requirements -

 $-200 \le V_7 \le -150 \text{ cm}$

 $2 \le V_R \le 5 \text{ cm}$

- Momentum -

$$\sum_{Tracks} p_z > 0$$

- Centrality Cut -

Top 10 %

Apply Cuts

After Cuts

Centrality Cut

Centrality is determined using pion multiplicity

- Glauber Monte Carlo model is used to estimate number of participants (collisions)
- Pion multiplicity per participant (collision) is modeled with a negative binomial distribution
- Grid search is performed to find parameters of NBD which best fit the Au+Al pion multiplicity data

TOP: Comparison of Pion multiplicity from GMC simulation to data.

Left: Transverse section of an Au+Al event showing participant nucleons and overlap region.

Pion/Proton Acceptance

all three energies)

STAR Particle Identification and Fits

Above: Energy loss in the TPC as a function of momentum for tracks of events satisfying event selection criteria.

Right: Example of a Gaussian fit in a single m_T-m₀ bin used to extract pion yield.

Energy Loss in TPC

 Excellent PID capabilities in fixed target configuration

nσ Fit

 Tracks are separated into transverse mass bins and fit with Gaussians to extract yield

Pion Spectra

Uncorrected Pion Spectra

- → Efficiency corrections will primarily effect the lowest m_T-m₀ bins
- → Need study of detector material interaction effects
- → Pion yield expected to increase with energy
- → Slope parameter will be extracted and used in the Coulomb fit of the pion ratio

Proton Spectra

Au+Al Invariant Proton Yield

Uncorrected Proton Spectra

- → Efficiency corrections will primarily effect the lowest m_T-m₀ bins
- → Need study of detector material interaction effects
- → Proton yield expected to decrease with energy
- → Slope parameter will be extracted and used in the Coulomb fit of the pion ratio

Coulomb Fit to Pion Ratios

Coulomb Fit

The pion ratio is fit with a function of the form:

$$\frac{\pi^{+}}{\pi^{-}}(m_{T} - m_{\pi}) = R \frac{e^{(E+V_{Eff}/T_{\pi})} - 1}{e^{(E-V_{Eff}/T_{\pi})} - 1} J$$

where J is the Jacobian, V_{Eff} is the effective potential given by

$$V_{Eff}(\gamma_{\pi}\beta_{\pi}) = V_C(1 - e^{-E_{max}(\gamma_{\pi}\beta_{\pi})/T_p})$$

where

$$E_{max}(\gamma_{\pi}\beta_{\pi}) = \sqrt{(m_p \gamma_{\pi}\beta_{\pi})^2 + m_p^2} - m_p$$

 V_{c} is the Coulomb Potential, and R is the initial pion ratio.

- [1] L. Ahle et al. (E866) Nucl. Phys. A610, 139c (1996), and PRC57, R446 (1998).
- [2] L. Rosselet et al. (WA98) Nucl. Phys. A698, 647c (2002).
- [3] L. Kumar et al. (STAR) J.Phys.G; Nucl.Part.Phys. 38 (2011) 124145

Error bars are statistical only
Systematic error analysis of efficiency and
background corrections is underway

Conclusions

Analysis of Au+Al fixed target collisions at STAR using RHIC has been successful

- Particle Identification for fixed target collisions is excellent
- STAR has good acceptance for fixed target collisions from midrapidity to target rapidity
- STAR can be used to analyze fixed target collisions.

Acceptance and efficiency corrections will allow the ability to:

 Determine the energy dependence of the initial pion ratios and Coulomb potential

BackUp: 3.5 GeV

Backup: 4.5 GeV

